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BACKGROUND: The fungus Aspergillus fumigatus (A. fumigatus) is the leading cause of invasive mold infections, which cause severe disease and
death in immunocompromised people. Use of triazole antifungal medications in recent decades has improved patient survival; however, triazole-
resistant infections have become common in parts of Europe and are emerging in the United States. Triazoles are also a class of fungicides used in
plant agriculture, and certain triazole-resistant A. fumigatus strains found causing disease in humans have been linked to environmental fungicide use.
OBJECTIVES: We examined U.S. temporal and geographic trends in the use of triazole fungicides using U.S. Geological Survey agricultural pesticide
use estimates.
DISCUSSION: Based on our analysis, overall tonnage of triazole fungicide use nationwide was relatively constant during 1992–2005 but increased
>4-fold during 2006–2016 to 2:9million kg in 2016. During 1992–2005, triazole fungicide use occurred mostly in orchards and grapes, wheat, and
other crops, but recent increases in use have occurred primarily in wheat, corn, soybeans, and other crops, particularly in Midwest and Southeast
states. We conclude that, given the chemical similarities between triazole fungicides and triazole antifungal drugs used in human medicine, increased
monitoring for environmental and clinical triazole resistance in A. fumigatus would improve overall understanding of these interactions, as well as
help identify strategies to mitigate development and spread of resistance. https://doi.org/10.1289/EHP7484

Background
Invasive aspergillosis is a severe and frequently fatal fungal dis-
ease (mortality rate 25–59%) that most commonly affects people
who are immunocompromised (e.g., because of transplantation or
malignancy) or have structural lung disease (e.g., chronic ob-
structive pulmonary disease) (Kontoyiannis et al. 2010; Pappas
et al. 2010; Steinbach et al. 2012). Approximately 15,000 U.S.
hospitalizations with invasive aspergillosis are estimated to occur
annually based on medical coding data, with incidence increasing
over the past decade in part because of the growing numbers of
patients at risk (Benedict et al. 2019; Vallabhaneni et al. 2017).
In high-risk groups, such as solid organ transplantation recipients,
the incidence can approach 1% (Pappas et al. 2010). However,
medical coding likely does not encompass all diagnosed cases,
and the lack of national public health surveillance limits under-
standing of the true burden. Furthermore, many more undiag-
nosed cases likely exist. A systematic review of 31 studies of
autopsy-confirmed misdiagnosis among intensive care unit
patients during 1966–2011 (5,863 examinations, 14 countries
represented) indicated that aspergillosis was one of the most com-
monly missed diagnoses (Winters et al. 2012).

Aspergillus fumigatus (A. fumigatus), the species of patho-
genic fungi that causes most invasive aspergillosis (Patterson
et al. 2000), is common in the environment, particularly in decay-
ing plant material but also at low levels in ambient air (Tekaia
and Latgé 2005). Unlike many other fungi, it is thermotolerant up
to 65°C and grows optimally at normal and febrile human body
temperatures (∼ 37–40�C), including during fever response, a

key factor in its human pathogenicity, as well as at the elevated
temperatures found in composting organic matter (Kwon-Chung
and Sugui 2013). Although it is widely present in agricultural
areas, it is not known to cause disease in plants. Mold-active tria-
zole antifungal medications (e.g., voriconazole) are the mainstay
of treatment for invasive aspergillosis, having substantially
improved patient survival following their introduction in the
1990s (Herbrecht et al. 2002; Verweij et al. 2016a). Only three
main classes of antifungal medications (triazoles, echinocandins,
and polyenes) are available to treat systemic fungal infections
like aspergillosis.

Whereas relatively few fungi cause invasive disease in humans,
fungi are themost common cause of plant infections. Fungicides have
been widely used for centuries to treat plant infections, prevent crop
loss, and increase agricultural yield; fungicides are also used to pre-
serve wood and other materials (Morton and Staub 2008; Russell
2005; ECDC 2013; U.S. EPA 2015; Wise et al. 2019; Wise and
Mueller 2011). Data on global triazole usage are limited, and the
United Nations’ Food and Agriculture Organization provides data on
combined triazole and diazole use,making it difficult to determine the
amount of triazole use alone (FAOSTAT 2019). Sales data suggest
that triazoles are widely used agricultural fungicide classes, compris-
ing over a quarter of estimated global fungicide sales (ECDC 2013).
Fungal pathogens of agricultural crops have developed resistance to
many classes of fungicides, including triazoles (Cools and Fraaije
2008; Hu et al. 2016; Price et al. 2015), prompting the Fungicide
Resistance Action Committee (https://www.frac.info/home) and
other organizations to devote substantial resources to preventing and
managing resistance. Notably, certain agricultural triazole fungicides,
including bromuconazole, difenoconazole, epoxiconazole, propico-
nazole, and tebuconazole are structurally highly similar tomedical tri-
azoles used to treat aspergillosis (e.g., voriconazole, itraconazole, and
posaconazole) (Snelders et al. 2012).

Like plant pathogens that have developed resistance to triazole
fungicides, A. fumigatus strains resistant to medical triazoles have
emerged globally, prompting public health concerns. Resistant
aspergillosis is associated with treatment failure and high mortal-
ity, ranging from 42% to 88% (Lestrade et al. 2019; Resendiz-
Sharpe et al. 2019; van der Linden et al. 2011). Death occurs more
commonly in resistant infections, with 90-d mortality being 25%
higher in patients with resistant vs. susceptible aspergillosis in a
European study (Lestrade et al. 2019). Resistance in A. fumigatus
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can develop in twoways. First, it can develop inside the body under
selection pressure from long-term use of triazole medications.
During the 1990s, small numbers of triazole-resistant infections
were identified in patients receiving long-term triazole prophylaxis
or therapy (e.g., for aspergilloma, cavitary lung disease, or other
noninvasive aspergillosis), with resistance mechanisms involving
point mutations in the triazole target and ergosterol synthesis gene,
CYP51A (Camps et al. 2012; Heo et al. 2017; Howard et al. 2013,
2009). Resistance occurs less frequently in invasive aspergillosis,
presumably because the fungus has less time to grow in the body.
Given the contribution of antifungal use to triazole resistance in
A. fumigatus, it is notable that triazole use in U.S. hospitals
declined by 21% during 2006–2012, the most recent years with
available data (Vallabhaneni et al. 2018).

In the late 1990s, a new resistance mechanism was identified in
patients who had A. fumigatus infections, and the samemechanism
was identified in A. fumigatus exposed to triazole fungicides in the
environment. This mechanism, TR34 /L98H (whichwe will refer to
as TR34), includes a 34-base pair tandem repeat (TR) in the cyp51A
promoter coupled with a specific point mutation in the coding
region and can confer resistance to all triazole medications, known
as pan-resistance (Abdolrasouli et al. 2018). In contrast to the re-
sistance mechanism that can develop inside the human body, this
environmental resistance was observed in isolates primarily from
patients who had never taken triazole medicines (Snelders et al.
2008; Verweij et al. 2007), with subsequent studies finding that
53–64% of patients with resistant infection lacked exposure to
medical triazoles (van der Linden et al. 2011, 2013).

Because triazoles are widely used in agriculture as fungicides,
researchers suspected that the TR34-based resistance developed in
the environment under fungicide-induced selection pressure
(Bromley et al. 2014; Snelders et al. 2009) and that infections
resulted from exposure to already-resistant A. fumigatus rather
than resistance developing in the patient (Berger et al. 2017).
Subsequent research provided additional evidence for this hy-
pothesis and identified a second genotype, TR46/Y121F/T289A
(TR46), thought to be linked to fungicide use (Astvad et al. 2014;
Chowdhary et al. 2014b, 2015; Lavergne et al. 2015; Le Pape
et al. 2016; Montesinos et al. 2014; Steinmann et al. 2015; van
der Linden et al. 2013, 2015; Vermeulen et al. 2012). Although
the TR-based mechanisms may not be definitive markers of envi-
ronmental resistance, one report described a resistant isolate with
a TR120 mechanism in a patient on long-term triazole therapy for
chronic aspergillosis (Hare et al. 2019). Overall, evidence sug-
gests that isolates with TR34 and TR46 mutations result from envi-
ronmental triazole exposure (Buil et al. 2019).

TR34- and TR46-mediated resistance has become common in
patients with aspergillosis in parts of Europe, where up to 20% of
infections are now resistant to medical triazoles (Bueid et al.
2010; Lelièvre et al. 2013; Resendiz-Sharpe et al. 2019; van der
Linden et al. 2015; Vermeulen et al. 2013). Resistant A. fumiga-
tus strains with TR34 and TR46 mutations have also been reported
among azole-naïve patients in the Middle East, Asia, Africa,
Australia, and South America (Chowdhary et al. 2014a, 2017;
Meis et al. 2016; Vermeulen et al. 2013; Verweij et al. 2016a). In
addition, environmental isolates with TR34 and TR46 mutations
have been detected in Europe, Asia, South America, and East
Africa (Alvarez-Moreno et al. 2019; Badali et al. 2013;
Chowdhary et al. 2012, 2014b; Dunne et al. 2017; Le Pape et al.
2016; Mortensen et al. 2010; Schoustra et al. 2019; Vermeulen
et al. 2012). Further supporting a link between fungicide use and
clinical resistance, triazole fungicides similar to medical antifun-
gals were introduced for agricultural use in the Netherlands just
before the first TR34 strain was found in human clinical settings
in the late 1990s (Meis et al. 2016).

In the United States, associations between agricultural triazole
fungicide use and human infections have not been investigated,
but a small number of infections caused by resistant A. fumigatus
strains have been identified (CDC 2019). The first TR-based re-
sistance in patients was reported in 2016, including retrospec-
tively identified isolates (2 TR34 and 2 TR46) collected as early as
2008 (Vazquez and Manavathu 2016; Wiederhold et al. 2016).
An additional 6 isolates were detected through 2018 (Beer et al.
2018). Together, these 10 isolates likely reflect only a small pro-
portion of the true number of resistant infections given the lack
of standardized surveillance and limited clinical testing. Resistant
A. fumigatus strains with the TR34 mutation have also been found
in peanut crop debris in the U.S. state of Georgia that had been
treated with propiconazole and tebuconazole, triazoles that are
structurally similar to medical triazoles (Hurst et al. 2017), dem-
onstrating the presence of this resistance in the U.S. agricultural
environment. Because of this emergence in the United States, the
CDC has placed triazole-resistant A. fumigatus on its Watch List
for antimicrobial resistance threats (CDC 2019).

Given the increased global incidence of triazole-resistant
Aspergillus infections, recent identification of triazole resistance
mechanisms linked to environmental agricultural fungicide use in
the United States, and triazole agricultural fungicides with the
same mechanism of action as triazole antifungal medications, we
characterized trends in U.S. agricultural triazole use to explore
possible implications for antifungal-resistant human infections.
We also examined available data regarding the use of triazole
fungicides for purposes other than food production, including turf
and other landscape maintenance and flower production.

Methods
We analyzed publicly available state-level estimates of annual
agricultural pesticide use from the U.S. Geological Survey
(USGS) (Baker and Stone 2015; Stone 2013; Thelin and Stone
2013) for 15 triazole fungicides used in the United States during
1992–2016 (USGS 2017). Data for the District of Columbia,
Hawaii, Alaska, and territories were not included in the estimates.
Methods for these estimates are described in detail elsewhere
(Baker and Stone 2015; Stone 2013; Thelin and Stone 2013).
Briefly, for states other than California, proprietary farm survey
data collected by Gfk Kynetec, Inc., on the amounts of pesticide
used on specific crops are aggregated by the U.S. Department of
Agriculture (USDA) to estimate pesticide-by-crop use rates
within crop reporting districts (CRDs). Each CRD covers multi-
ple counties and each county is assigned to a single CRD.
County-level pesticide use estimates are then derived by applying
CRD-level pesticide-by-crop use rates to county-level estimates
of the harvested acreage of each relevant crop (based on USDA
Census of Agriculture data) and state-level use estimates are
derived by summing the county-level estimates. When survey-
based pesticide-by-crop use rates are missing for a CRD in a
given year, two different approaches are used to account for the
missing data (Thelin and Stone, 2013). Estimates based on the
first approach assume zero use for counties with missing data and
are referred to as low-use estimates. Estimates based on the sec-
ond approach extrapolate rates based on data for nearby CRDs
and are referred to as high-use estimates. Specifically, pesticide-
by-crop use rates are estimated using the median rate for all con-
tiguous CRDs; or, if data are missing for all contiguous CRDs,
the median rate for all CRDs adjacent to contiguous CRDs; or, if
data are missing for all of these CRDs, the median of all nonzero
rates for all CRDs within the same USDA Farm Resource
Region. To simplify interpretation, we used the mean of the low
and high annual agricultural pesticide use estimates in this report,
rather than presenting each separately. For California, the USGS
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inputs data on county-level pesticide use from the state’s pesti-
cide use reports (PURs), collected by the California Department
of Pesticide Regulation.

Fifteen triazoles in the USGS data set are used primarily as
fungicides. Because 7 of these triazoles (difenoconazole, metco-
nazole, myclobutanil, propiconazole, prothiconazole, tebucona-
zole, and triadimefon) accounted for 93% of triazole use, we
grouped the remaining 8 fungicides (cyproconazole, fenbucona-
zole, flusilazole, flutriafol, ipconazole, tetraconazole, triadimenol,
and triticonazole) into a single category. Three of the 5 agricul-
tural triazoles documented to be structurally similar to medical
triazoles (Snelders et al. 2012) are registered for use in the
United States (difenoconazole, propiconazole, and tebuconazole).

Based on USGS classifications, we grouped crops into eight
categories: corn, cotton, orchards and grapes (stone fruit trees,
citrus, nut trees, apples, pears, and grapevines), rice, soybeans,
vegetables and fruit (vegetables and non-orchard fruit, including
beans, peas, greens, berries, and melons), wheat, and other crops.
The other crop category includes pasture and hay (cropland for
pasture, fallow and idle cropland, pastureland, and other hay),
alfalfa, sorghum, non-wheat grains, tobacco, peanuts, sugarcane,
sugar beets, and other miscellaneous crops (Baker and Stone
2015; Stone 2013; Thelin and Stone 2013).

We characterized estimated U.S. triazole fungicide usage
stratified by year, specific compounds, crop type, and geographi-
cal location. To aid in interpretation, we used the mean of the
low and high annual agricultural pesticide estimates rather than
presenting each separately. We also examined state-specific use
of triazoles, including by crop type, over five time periods
(1992–1996, 1997–2001, 2002–2006, 2007–2011, and 2012–
2016) and compared use during the periods 2012–2016 vs. 1992–
1996. To calculate differences over time, we summed the mean
metric tons of fungicide use for years 2012–2016 and subtracted
that value with mean metric tons for years 1992–1996. All analy-
ses were completed in R (Version 3.6.3; R Development Core
Team) and maps were created in ArcGIS (ArcGIS Desktop ver-
sion 10.5.1; Esri Inc.).

Given that triazole fungicides are used in the environment for
purposes other than food production, we separately examined
California’s PUR data for 2017, the most recent year with avail-
able data, because the system includes data on a wider range of
uses than the USGS data set (California Department of Pesticide
Regulation 2017). We examined triazole use in turf (golf course
turf, landscape maintenance, bermudagrass, rights of way, and
turf/sod), ornamental (garland chrysanthemum, greenhouse
flower, greenhouse plants in containers, greenhouse transplants,
outdoor flower, outdoor plants in containers, and outdoor trans-
plants), treated lumber, and other (airport, animal burrows, ani-
mal premise, beehive, Christmas tree, nonagricultural outdoor
buildings, commercial storages or warehouses, commodity fumi-
gation, dairy equipment, ditch bank, farm building, agricultural
building, food processing plant, timberland forest, other fumiga-
tion, seed grass, greenhouse fumigation, household, industrial
processing water, industrial site, industrial disposable water
waste disposal systems, public health, regulatory pest control,
research commodity, and structural pest control).

Results
Estimated triazole fungicide use was relatively constant between
1992 (428 metric tons) and 2006 (539 metric tons) but increased
434% from 2006 to 2016, to 2,880 metric tons (Figure 1, Table S1).
Triazole use by compound differed over time (Figure 2A, Table S2).
The estimated use of propiconazole and tebuconazole, the most
widely used fungicides in 2016, increased little from 1992 to 2006,
whereas use increased by 366% for propiconazole and 229% for

tebuconazole during 2006–2016. First use of three newer triazoles—
difenoconazole, metconazole, and prothiconazole—was reported af-
ter 2006, and usage increased to a total of 732metric tons in 2016. In
contrast, the estimated use of myclobutanil and triadimefon
decreased during 1992–2016 (Figure 2A, Table S2).

The estimated triazole fungicide use by crop type also
changed substantially over time (Figure 2B, Table S3). During
1992–2005, the primary use was on wheat, orchards and grapes,
and other crops. Use on wheat began to increase markedly in
2007, with use increasing 683% during 2006–2016, resulting in
the highest use among all crops in 2016 (1,253 metric tons). Use
on corn and soybeans also increased dramatically, with use on
corn growing from 0 to 437 metric tons during 2006–2016, while
use on soybeans increased from 61 to 361 metric tons. Use on
other crops, rice, vegetables, and cotton increased steadily over
time but at a slower rate. Use on orchards and grapes remained
relatively constant (Figure 2B, Table S3).

The estimated geographical distribution of triazole fungicide
use shifted as use by crop type changed over time (Figure 3, Tables
S4 and S5). The two states with the highest use during the 2012–
2016 period, North Dakota (1,800 metric tons) and Georgia (1,008
metric tons), also had the largest increase since 1992–1996. This
was primarily due to application on wheat in North Dakota and
other crops, such as peanuts, in Georgia (Figure S1). Although
California had the third highest usage during 2012–2016 (711met-
ric tons), application increased <50% since 1992–1996; triazoles
were used primarily on orchards and grapes. The geographic shift
is apparent as triazole use increased in the Midwest with wheat,
corn, and soybeans (Figure S1, Tables S4 and S5).

The estimated triazole fungicide use for nonfood settings (e.g.,
turf, flowers, landscape maintenance) are unknown. However, in
California, based on estimated PUR data in a single year, 5% of
reported triazole fungicide use occured in nonfood production set-
tings (Table S6).

Discussion
Based on our analysis of USGS estimates, overall U.S. triazole fun-
gicide use in agriculture was relatively constant during 1992–2005
and increased >4-fold during 2006–2016 based onUSGSestimates.
Although estimated triazole usage increased in nearly every crop
type and state over the period, the increase occurred primarily in
wheat, corn, soybeans, and other crops in the Midwest and
Southeast. These increasesmay have implications for triazole resist-
ance in pathogenic fungi for humans, particularly in A. fumigatus,
based on evidence from Europe and elsewhere (Bueid et al. 2010;
Lelièvre et al. 2013; Resendiz-Sharpe et al. 2019). Given that resist-
ance mutations previously associated with environmental triazole
use have recently been detected in U.S. patient and environmental
A. fumigatus isolates (Beer et al. 2018; Hurst et al. 2017), additional
study of the role of agricultural fungicides iswarranted.

Several factors may explain the dramatic increase in U.S. tria-
zole fungicide use after 2006, including increased corn production
in response to higher prices, plant diseases in certain regions, ability
to use new fungicides on field crops, and marketing of fungicides
for use on field crops (Mueller et al. 2017; Wise andMueller 2011).
For example, when soybean rust caused by the fungus Phakopsora
pachyrhizi was first identified in the United States in 2004, several
fungicides were registered or granted emergency exemptions for
treatment of soybeans, including myclobutanil, propiconazole,
tebuconazole, and tetraconazole (Battaglin et al. 2011; Sconyers
et al. 2006; Wise and Mueller 2011). Another class of fungicides
called strobilurins have beenmarketed to increase soybean and corn
yield, frequently in combination with triazoles (Swoboda and
Pedersen 2009; Wise and Mueller 2011). Fungicides are also used
preemptively and in targeted ways in what are called insurance
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applications, cover sprays, or prophylactic treatments when they are
added to spray tanks being used to apply other pesticides like herbi-
cides or insecticides (DiFonzo 2012).More research may be helpful
to understand the reasons behind the large increases in triazole
fungicides.

Because both triazoles and A. fumigatus can travel in the envi-
ronment, exposure and resistance selection should be considered
beyond the sites of application at agricultural fields. For example,
triazoles have been detected in surface waters across the United
States (Battaglin et al. 2011; Nowell et al. 2018; Sanders et al.
2018; Smalling and Orlando 2011). Further, triazoles can be

transported long distances in the atmosphere (Désert et al. 2018;
Schummer et al. 2010), and residues have been detected in
amphibians living in remote locations in the Sierra Nevada, dozens
of miles downwind from where they were applied (Smalling et al.
2013). This mobility means that A. fumigatus in areas outside agri-
cultural land may be exposed to triazoles, providing opportunity
for resistance to develop. A. fumigatus spores, like spores of fungal
plant pathogens, can travel long distances in the air (Brown and
Hovmøller 2002). Triazole-resistant A. fumigatus isolates with
fungicide-associated TR mutations have been found inside the
homes and in the yards of aspergillosis patients, in hospital

Figure 1. Average agricultural triazole fungicide use by year in metric tons, United States, 1992–2016. Estimates were derived by averaging low and high U.S.
Geological Survey (USGS) agricultural pesticide estimates for each year. For corresponding numeric data, see Table S1. Data from the USGS National Water-
Quality Assessment: The Pesticide National Synthesis Project (USGS 2017).
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gardens, and in air samples taken from inside hospitals
(Chowdhary et al. 2014b; Lavergne et al. 2017; van der Linden
et al. 2013).

Data on nonfood production uses of triazole fungicides in
the United States were limited to a single state, California,

where 5% of triazole fungicides in 2017 were used for turf,
landscape, flowers, lumber, and other. This proportion is likely
to be different in other states and nationally and is an important
topic of further study, particularly because some of these uses
may be closer to population centers. Residential use of triazole

A

Figure 2. Average agricultural triazole fungicide use by crop and compound type inmetric tons, United States, 1992–2016. (A) Triazole use by compound type inmet-
ric tons, 1992–2016. Fifteen triazoles included in the U.S. Geological Survey (USGS) data set were grouped into eight triazole categories: a) difenoconazole, b) metco-
nazole, c) myclobutanil, d) other, e) propiconazole, f) prothiconazole, g) tebuconazole, and h) triadimefon. The following triazoles were grouped into the “other”
triazole compound type category: cyproconazole, fenbuconazole, flusilazole, flutriafol, ipconazole, tetraconazole, triadimenol, and triticonazole. For corresponding
numeric data, see Table S2. (B) Triazole use by crop type inmetric tons, 1992–2016. Cropswere grouped into eight categories: a) corn, b) cotton, c) orchards and grapes
(stone fruit trees, citrus, nut trees, apples, pears, and grapevines), d) other crops, e) rice, f) soybeans, g) vegetables and fruit (all vegetables and non-orchard fruit, includ-
ing beans, peas, greens, berries, and melons), and h) wheat. The following crop combinations were grouped into the “other” crop type category: pasture and hay (crop-
land for pasture, fallow and idle cropland, pastureland, and other hay); alfalfa; and other (sorghum, non-wheat grains, tobacco, peanuts, sugarcane, sugar beets, and
other miscellaneous crops). For corresponding numeric data, see Table S3. Data from the USGSNationalWater-Quality Assessment: The Pesticide National Synthesis
Project (USGS2017). Estimateswere derived by averaging low and highUSGS agricultural pesticide estimates for each year.
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fungicides could also be examined because consumers can pur-
chase some of these fungicides (e.g., propiconazole) in stores
and online.

Important parallels can be drawn between the challenges with
agricultural use of medically important triazoles and agricultural
use of medically important antibacterial drugs. In recent years,
the U.S. Food and Drug Administration has required that new
antimicrobial drugs used in food-producing animals undergo a
risk assessment to determine potential impacts on bacteria of
human health concern (Center for Veterinary Medicine 2019a,
2019b). The evaluation of potential human health impacts of agri-
cultural triazole fungicide should be considered in more depth.
Given that greater use of an antimicrobial is known to select for

increased antimicrobial resistance, and that triazole-resistant
infections are emerging in plants, greater triazole resistance in
human pathogens may emerge as well (Chowdhary et al. 2013).
Although detection of TR34 and TR46 has been limited in the
United States to date (Beer et al. 2018), surveillance, reporting,
and susceptibility testing for A. fumigatus infections are not rou-
tinely conducted, suggesting that such infections are likely more
widespread than what is reported. For example, only 62% of the
infectious disease doctors surveyed through the Emerging
Infections Network in the United States reported having access to
susceptibility testing for A. fumigatus, and such tests were not
routinely ordered. Nevertheless, physicians reported seeing resist-
ance in the United States, with 19% observing any triazole

B

Propiconazole

Tebuconazole

Prothioconazole

Metconazole

Other

Difenoconazole

Myclobutanil

Triadimefon

Figure 2. (Continued.)
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resistance and 7% pan-resistance. Fourteen percent were aware of
a possible link to environmental fungicide use (Walker et al. 2018).
In contrast, testing for resistance in A. fumigatus in Europe is more
widespread. The European Centre for Disease Prevention and
Control recommends triazole antifungal susceptibility testing on

all clinical A. fumigatus isolates when starting antifungal therapy
(ECDC2013).

Several limitations are inherent in this descriptive analysis of
U.S. fungicide use. First, the USGS data are estimates based on a
proprietary farm survey (except for California, which has a state

Figure 3. Agricultural triazole fungicide usage map by state in metric tons, United States, 1992–2016. (A) Differences in triazole fungicide usage 1992–1996
and 2012–2016 (in metric tons), (B) triazole fungicide usage 1992–1996 (in metric tons), (C) triazole fungicide usage 1997–2001 (in metric tons), (D) triazole
fungicide usage 2002–2006 (in metric tons), (E) triazole fungicide usage 2007–2011 (in metric tons), and (F) triazole fungicide usage 2012–2016 (in metric
tons). Estimates from the District of Columbia, Hawaii, Alaska, and the territories were not included in the maps. For corresponding numeric data, see Tables
S4, S5, and S6. Data from the U.S. Geological Survey (USGS) National Water-Quality Assessment: The Pesticide National Synthesis Project (USGS 2017).
Estimates were derived by averaging low and high USGS agricultural pesticide estimates for each year.
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reporting system), and some degree of error is expected. In this
descriptive analysis, we took the mean of the USGS low and high
triazole estimates, which is a simplification involving differing esti-
mates. Second, we did not adjust triazole usage by units of acreage
treated, arable land by state or crop, restriction of certain crops in a
state, and availability of seed treatment data, although these may be
areas of further study. Finally, although available evidence points to

environmental fungicide use as a driver of TR-based triazole resist-
ance in A. fumigatus globally, direct associations between quantity,
use pattern, and timing of agricultural fungicide use and resistant
human infections in theUnited States have not yet been established.

Research and partnerships may allow for opportunities to inter-
vene early before A. fumigatus resistance becomes a larger clinical
problem in the United States. First, more robust laboratory-based

Figure 3. (Continued.)
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surveillance for A. fumigatus infections (Verweij et al. 2016b),
including systematic antifungal susceptibility testing and micro-
biome studies, could better determine the burden of resistant
infections, as well as geographic and temporal trends. Second,
wider-scale environmental testing could assess the distribution of
resistance in the environment and agricultural sector. Third, inter-
disciplinaryOneHealth partnerships could identifyways tomitigate

resistance, including exploring alternative fungicides and integrated
pest management (Chowdhary et al. 2013; Fisher et al. 2018).
Finally, antifungal stewardship in human medicine plays an impor-
tant role in the judicious use of these limited and important medica-
tions (Fitzpatrick et al. 2020), and hospital stewardship programs
have been shown to reduce the burden of antimicrobial-resistant
human infections (Ananda-Rajah et al. 2012; Baur et al. 2017).

Figure 3. (Continued.)
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These analyses demonstrate that triazole fungicide use in agri-
culture has increased >4-fold during 2006–2016 in the United
States, driven primarily by increases in propiconazole and tebucona-
zole, with the largest increases in central parts of the United States.
Exposure of A. fumigatus to fungicides can select for mutations that
cause resistance to the primary antifungals used to treat human
aspergillosis. Data on agricultural triazole use can inform further
research, risk assessments, and policy decisions related to resistant
fungal infections associated with patient illness and death.
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